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Abstract

Personnel retention is a very important topic in both the private and public sectors.

Not only do companies need to make sure they have the right people, they need

to have the right amount of people. Within the public sector, specifically the US

Air Force, maintaining appropriate manning comes in two phases; bringing in the

right amount of people each year, and retaining enough people from year to year.

These two aspects go hand in hand; if the Air Force knows how many people they

will lose in a given year, they can bring in the exact number of people they need

to make sure they maintain their end strength requirements. As part of the effort

to ensure proper military accessions, the Air Force uses retention models to assist

in predicting the future retention patterns. Not only does the Air Force want to

make sure they meet their end strength requirements, they want to make sure they

bring in the correct amount of people to each career field. The career fields, Air

Force Specialty Codes (AFSCs), have a personnel requirement each year in order to

accomplish that AFSCs mission. In this study, semiparametric survival analysis was

used to determine the significant factors in predicting the rated officer career retention

rates. The variables considered were sex, marital status, whether or not an officer had

dependents, whether or not an officer was prior enlisted, whether or not an officer

graduated as a distinguished graduate, and the institution from where the officer

was commissioned. All of these factors were significant for the rated officer career

field, which was validated using survival analysis. All of these factors are included in

the survival analysis, which took the variables and created a survival curve fit to a

specific distribution; the log-logistic. This survival curve was compared to previously
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done survival analysis to determine the best decision for use in manpower retention

prediction for the Unted States Air Force.
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PARAMETRIC SURVIVAL ANALYSIS OF US AIR FORCE

RATED OFFICER RETENTION

I. Introduction

1.1 Problem Background

1973 was the first year the United States no longer used conscription to constitute the

military. The All Volunteer Force (AVF) was established, and since then the United States

military has remained an all volunteer force [1]. The All Volunteer Force brought along the

challenge of bringing in an adequate number of people into the military, and keeping those

individuals in for as long as desired.

The United States Air Force receives an end strength cap on the size of their force each

fiscal year by Congress. The end strength manpower is calculated by how many members

are in the Air Force at the beginning of the year, adding the number of personnel acquired

during that fiscal year, and subtracting the number of personnel lost during the fiscal year.

These numbers drive the recruiting of new members brought in during each fiscal year. If

the Air Force has less individuals than the end strength requirement, they can bring in more

members to fill their needs. However, if the Air Force has more individuals than the end

strength requirement, those extra members may need to be released to meet the end strength

requirement. This inconsistency of maintaining the desired manpower end strength affects

all career fields within the Air Force.

The Air Force is split into two active duty components: enlisted and commissioned

1
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officers. The difference between these two components is that commissioned officers must

attend college before entering the Air Force, and then attend a commissioning source such as

the USAFA, Officer Training School (OTS) or civilian university Reserve Officers’ Training

Corps (ROTC). Within these active duty components are career fields, split up by the type

of mission each supports, known as Air Force Specialty Codes (AFSCs). The officer career

fields are split into rated, non-rated line, and non-rated non-line AFSCs.

The rated AFSCs main mission is flying, while the non-rated officers’ functional capacity

is to support the flying mission. The rated officers are split into four career fields; Pilot,

Combat Systems Officer (CSO), Air Battle Manager (ABM), and Remotely Piloted Aircrafts

(RPA). These rated career fields require extensive initial training to equip personnel to

perform the required task of their career field. Subsequently there are continuous training

upgrades in order to remain qualified as a rated officer. If a rated officer does not remain

qualified, they lose their aeronautical rating, are no longer rated, and no longer equipped to

do their job.

The training required to become a rated officer is expensive and time consuming, but

varies by career field. Pilots have a year of initial pilot training, after which their airframe is

decided. Pilots then train for their specific airframe, which requires 4 to 8 months. Training

a pilot is the most expensive training for any career field. According to the United States

General Accounting Office (GAO), in 1999 the cost to send one pilot through basic pilot

training was $1 million, and the cost to fully train a pilot was $9 million. As with any

officer’s training, pilots incur a payback, otherwise known as an Active Duty Service Com-

mitment (ADSC), upon completion of any training. Once a pilot’s (ADSC) is served, they

can voluntarily separate from the Air Force. Not only does the Air Force lose the millions

of dollars invested in training that rated officer, they now have to train another officer to fill

the void created [2].

An ADSC is a contractual obligation for an individual to serve the Air Force for a specified

length of time. The first ADSC acquired, the accessions ADSC, is four years, except for

2
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officers coming from the United States Air Force Academy, which is five years. The ADSC

changes for rated officers once they have completed their intial rated officer training; ten

years for pilots, six years for CSOs and RPAs, and three years for ABMs.

Once the initial ADSC has expired, an officer can voluntarily separate from the Air Force.

In a study by Buyer and Abercrombie [2], the Air Force projected having a pilot shortage of

between 1,900 and 2,155 pilots. Some of the reasons for this shortage were reduced accessions,

training delays, or increased desire for rated officers outside of the Air Force. The reduction

of force in the mid 1990s caused the Air Force to reduce their pilot accessions, leading to

less pilots being trained and ready to fly by the end of the 1990s. This constant flux is part

of the reason the Air Force has trouble meeting their pilot manpower requirements, but the

main reason is that pilots separate from the Air Force before their replacement has been

trained [2].

Ideally the Air Force would bring in and train the exact number of rated officers they

need and none of those officers would separate. However, this is not feasible because of the

outside factors that continuously come into play causing pilots, and non pilots, to leave the

Air Force. The voluntary separation of rated officers becomes very time and cost sensitive,

leading the Air Force to offer multiple bonuses throughout a rated officer’s career in hopes

of retaining more officers. To combat the voluntary separations and rated officer shortages,

this research will identify those important factors that lead to rated officers leaving the Air

Force, and create a model to help predict the future retention of rated officers.

1.2 Research Scope

The officer corps, although it only makes up 20% of the total force, accounts for 100%

of the pilots, CSOs, and ABMs in the Air Force. Due to all of the training needed for rated

officers, there is a lot of time and money invested into the rated officer corps. Retaining

these officers is a priority for the Air Force because of the time and money it takes to train

3
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them. This research focuses on modeling ABMs’, CSOs’, and Pilots’ behavior over 40 years.

Specifically, this research examines a parametric approach to survival analysis in hopes of

improving the Air Force’s rated officer retention predictions.

1.3 Issues, Needs, and Limitations

This research utilized rated officer data from 2006-2015. The data comes from the Head-

quarters Air Force Directorate of Personnel officer (HAF/A1PF), and was extracted from

the Military Personnel Delivery System (MilPDS). Over this time period, career fields have

combined while others split; therefore, HAF/A1 had to change old data and fill in missing

data points.

MilPDS is prone to contain errors within the data, which can be due to glitches in the

system, input errors, or just missing data. The assumptions made by HAF/A1 when creating

and adapting the data have been inherited into this research.

1.4 Thesis Outline

Chapter 2 presents previous, relevant data to the topic of survival analysis and manpower

retention. Chapter 3 is the methodology section that describes survival analysis and finding

the best model for retention. Chapter 4 is the results and analysis section that compares

the parametric and semiparametric models and examines if the parametric model is a good

fit to the data. Chapter 5 is the conclusion and provides summary remarks regarding the

research.

4
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II. Literature Review

2.1 Introduction

This chapter reviews previous relevant work that uses survival analysis based on para-

metric models for manpower retention approximations.

The challenge with the military and their manpower problem is that it cannot be solved

from the top down; if the Air Force needs a Lieutenant Colonel, they cannot go outside of

the organization and find an individual that could fill this void. Every person in the Air

Force started from the bottom rank level of the Air Force. Once an individual no longer

wants to be in the Air Force, as long as their Active Duty Service Commitment has expired,

they are allowed to leave the Air Force and become a civilian.

Manpower is essential for the mission of protecting the country from all enemies foreign

and domestic, so it is necessary to have the correct amount of people each year to fill the

manpower requirements so the Air Force may operate as efficiently and effectively as possible.

Predicting the amount of people that may leave the Air Force in a given year allows the Air

Force to prepare for these separations years in advance; allowing them to have the amount

of officers at each rank required each year.

2.2 Modeling Techniques

Within manpower prediction, methodologies range from regression to survival analysis.

Regression analysis is a commonly used technique in military personnel management because

it is simple, yet effective. “Regression analysis is a statistical technique for investigating

and modeling the relationship between variables” [3]. The most commonly used type of

5
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regression, linear regression, models the linear relationship between the response variable

(y) and the regressor variable (x), or variables. The linear relationship is determined by

fitting a “line of best fit”. This line of best fit is fit with the purpose of being able to use

the different regressor variable inputs, usually values that have not yet been evaluated but

are within the data, and best predict the response variable outcome. The commonly used

least squares method’s goal in the line of best fit is to minimize the Sum of Squared Error

for the residuals; the difference between the actual value and the predicted value for all

regressor values. A measure of accuracy of this line is portrayed in the R2 value, which

ranges from 0 to 1, and is used to show how much of the variance in the response variable

can be explained by the regressor variable(s). Once this regression equation is established,

new regressor variables can be used to predict the associated response variable.

In some circumstances, such as with binary response data, linear regression analysis

may not be useful. This is where logistic regression comes in. “Logistic regression is a

mathematical modeling approach that can be used to describe the relationship of several x ’s

to a dichotomous dependent variable” [4]. The logistic model and linear model are similar

in theory, but the difference between the two is linear regression has a continuous dependent

variable (y) while logistic regression is used more commonly with categorical variables; values

that are integer in nature, and has a non-continuous dependent variable.

The strength of both linear and logistic regression analysis is interpolation; determining a

response based on regressor variables that are within the data range modeled. The weakness

of linear and logistic regression analysis is the counterpart, extrapolation; determining a

response variable based on regressor variables that have not already occurred. Extrapolation

is estimating a value based on data outside the range used to create the model. When

extrapolation is the goal of the research, using a method other than regression analysis may

be more useful to give a viable result [3].

Simulation is another modeling approach, but is more commonly used with systems or

processes. “A simulation is the imitation of the operation of a real-world process or system

6
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over time” [5]. Simulation is mainly used for complicated systems because those systems are

commonly hard to predict using a clean, analytical method. Analysts use varying software

products like Microsoft Excel [6], or more simulation specific like Arena [7] or SIMIO [8].

These analytic software programs are used to simulate real-world scenarios and calculate

different statistics that give information needed regarding the real-world scenario. “Once

developed and validated, a model can be used to investigate a wide variety of ‘what if’

questions about the real-world system” [9]. Although a simulation does not always yield a

100% solution, it is one of the better ways to gain insight into a real-world problem.

Within the broad area of simulation is the agent-based simulation, which is where “a

system is modeled as a collection of autonomous decision-making entities called agents”. The

actions of and the interactions between the agents are considered to determine the effects

they have on the system as a whole; “the whole is more than the sum of its parts because of

the interactions between the parts” [10]. The agents are given a set of rules and the model

is used to see how those rules shape the entities individually, and then the entire system as

a whole. Like simulation, agent-based modeling can model real-world scenarios, but unlike

simulation, agent-based simulation is better for modeling actions of and interactions between

autonomous agents. Agent-based simulation is better at modeling unexpected behavior of

the autonomous agents, while simulation is best with predictable interactions of agents.

Survival analysis techniques have been used recently to better analytically predict man-

power attrition in both the public and private sectors. Survival analysis is “a loosely defined

statistical term that encompasses a variety of statistical techniques for analyzing positive-

valued random variables. Typically, the value of the random variable is the time to failure

of a physical component. . . or the time to the death of a biological unit” [@]. In survival

analysis “there are three basic elements which must be well defined: a time origin, a scale

for measuring time, and an event” [11]. The time origin is most commonly the beginning

of a study (time = 0). The scale for measuring time varies with the event being measured.

Examples of events are birth, death, attracting a disease or anything that has a binary out-
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come; 0 meaning the event has not yet occurred, 1 meaning the event has occurred. The

survival function gives the probability of whatever event is in question, in our case manpower,

surviving or retaining up to that specified time [12].

One of the advantages survival analysis has over linear and logistic regression is how it

deals with censored data. According to Miller (2011), there are three types of data censorship:

type 1 censoring, type 2 censoring, and random censoring. Type 1 censoring occurs when

the trial ends at a predetermined time, so only the occurrences before the time expires are

being recorded. Type 2 censoring is when the trial ends when a specified fraction or when

a number of events occur. Random censoring is best explained in an example. Miller uses

a medical study: “In a clinical trial, patients may enter the study at different times; then

each is treated with one of several possible therapies. We want to observe their lifetimes,

but censoring occurs in one of the following forms”: loss to follow up; we never see the

patient again, drop out; patient refuses to continue treatment but we are still in contact,

and termination of study; study ends [13].

Survival analysis is useful in aspects where regression fails. For example, when regression

techniques see some data as an outlier, and remove that data, survival analysis includes that

data.

Survival analysis can be broken into three models; nonparametric, semiparametric, and

parametric models. The three types of models differ in flexibility; nonparametric being the

most flexible, and parametric being the least flexible. Understanding the differences between

the models allows for accurate model selection to best represent the survival data.

In nonparametric models “there is no assumptions about the shape of the hazard function

or about how covariates may affect that shape” [13]. Nonparametric models are generally

the starting point for survival analysis because they allow conducting survival analysis with-

out meeting any assumptions. These nonparametric models cannot handle more than one

covariate, so models with multiple covariates are usually handled using semiparametric or

parametric models.
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Semiparametric models make no assumptions about the shape of the hazard function, but

they do “make a strong assumption about how the covariates affect the shape of the hazard

function between groups over time” [13]. The hazard function is the ratio of the probability

density function and the survival function. The lack of a distributional assumption gives the

semiparametric model more flexibility and robustness, so they generally fit the data well.

The parametric function differs in that the outcomes follow a certain assumed distribu-

tion and the relationship between the covariates and survival also have assumptions. These

assumptions determine whether or not a proportional hazards or an accelerated failure time

model is chosen. In the proportional hazards models, the covariates have a multiplicative

effect on the hazard function. In accelerated failure time models, the survival time is inter-

preted to either accelerated, time scale factor greater than 1, or decelerate, time scale factor

less than 1 [14]. Parametric functions are useful because once a distribution is chosen, the

models can be completed without any sample data.

2.3 Methodologies

A major concern for colleges and universities is the rate at which students drop out.

Educators want to keep students in their programs until completion [15]. Min et al. set out

to determine the significant factors that influence as to whether or not a student is likely to

drop from the engineering majors of their respective undergraduate universities. The research

found that the significant factors differ between semesters; white and female students tend

to leave engineering schools earlier than average, students with lower SAT math scores tend

to leave during the second semester, and a student’s SAT math score better predicts the

likelihood of them dropping out than their SAT verbal score. The universities and colleges

can now use this information to better understand their student population and see if they

want to change the criteria of acceptance to an engineering school to decrease the student

drop-out rate.
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There have been a lot of studies about employee turnover rate in the civilian sector.

Cotton and Tuttle [16] used Ordinary Least Squares and piecewise regression models to

determine that almost all of the variables they studied; external, work-related, and personal

factors, were significant and related to turnover. Some of these variables were: unemployment

rate, pay, job performance, age, gender, and education. Most of these factors apply to the

military, but unlike in the civilian world, the military cannot change some factors such as:

pay, satisfaction with pay, tenure, etc.

The military promotes from within and cannot change individual wages based on perfor-

mance or lack thereof. Thus, some of the factors exhibited in [16] do not pertain to military

personnel turnover. Studying the factors in the civilian sector can help the military get a

better understanding of their own retention rates, especially when the military’s reenlistment

rates change based on some of the factors within the civilian sector.

Gass [17] discusses the various types of military manpower models used in the 1980s.

He stated that the problem manpower modeling addresses is to “determine the number of

personnel and their skills that best meets the future operational requirements of an enter-

prise”. Gass starts with transition rate models, also known as Markov chains, to answer the

question: “what is the composition of the force at the end of a planning period?” Markov

chains can be used to estimate new hires, separations, retirements, etc. This is done by

using different factors deemed relevant to manpower progression. These factors are: time

hired, skills, function, and job title. Gass notes that with large personnel systems, such as

the military, Markov models may be difficult to use because the steady-state forecasts they

generate may not be accurate enough due to the transition rates changing over time [17].

Even with this difficulty, Gass [17] notes how the US Army used Markov models to project

the flow of the US Army enlisted force. Since the Army was seeing a decrease in recruits,

they found it necessary to increase reenlistments to keep the necessary manpower to meet

requirements. This increase in reenlistments eventually led to an “older” force, which in

turn prompted a decrease in the promotion rate to counteract the earlier decision to increase
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recruitment.

Gass [17] also discusses how network-flow problems were adapted from their usual use

in scheduling to personnel flows. In a personnel flow approach, the source nodes represent

initial personnel inventories, the intermediate nodes are used to meet grade and skill goals,

and the sink nodes were final personnel inventories.

Although there are difficulties modeling personnel using the network-flow models, Gass

[17] discusses a model he used for officer personnel flow. When using a network-flow ap-

proach, the problem begins to grow rapidly when the number of grades, commands, and

skills increase, but these problems are still solvable.

In the 1980s, the military used the Accession Supply Costing and Requirements Model

(ASCAR) to reach a given personnel requirement and to optimize the mix of new recruits.

ASCAR determines the annual accessions needed to meet the service’s end strength, man

year, quality requirements, and the cost of the force over a 15-year time horizon, ASCAR uses

five steps; analyze historical data, simulate one-year losses, evaluate the new recruits based

on demographic and qualitative statistics, apply goal programming to meet end strength

requirements, and assess cost factors for alternative manpower policies. ASCAR uses goal

programming to determine these factors, but the problem with goal programming is that it

is not pareto efficient, therefore the solution cannot be completely trusted [18].

The US Navy used a statistical approach to their manpower projection models to find the

right number and types of people for their workforce[19]. Historical performance data were

analyzed to identify correlations between the model parameters and the retention outcomes

which were used to predict future outcomes. Cashbaugh [19] used agent-based simulation to

improve Navy personnel forecasting to model social, economic, quality of life, and incentives

factors.

Capon and Chernyshenko [20] studied applying civilian retention theory to the New

Zealand military. They note that up until their study, a majority of the military retention

studies rely too heavily on demographic and organizational characteristics; examples of demo-
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graphic are gender or race, while examples of organizational are male/female ratio and length

of overseas assignments. They degrade this ideology because of three reasons: demographic

characteristics cannot be changed, recruiting based on these demographics would further di-

minish the force, and focusing on demographics neglects the actual cause of turnover. They

touch on the fact that retention and turnover commonly go hand in hand, but that does not

account for the voluntary or involuntary turnover. Capon and Chernyshenko [20] concluded

that civilian retention models can be useful when looking at military retention.

Orrick [21] addressed a Marine Corps problem; they needed to increase their end strength

manpower by 20,000 over a three-year time period. Orrick focused on the attrition aspect

of manpower forecasting; he needed to determine how many marines were going to leave,

and when, in order for the Marine Corps to bring in enough individuals to meet their end

strength requirements.

Orrick [21] used logistic regression models to forecast manpower losses for three fiscal

years; 2005, 2006, and 2007. The primary aspect of his work was comparing End of Active

Service losses to non-End of Active Service losses. He used Receiver Operating Characteristic

(ROC) curves to assess the performance of his models, which showed than his logistic models

performed well. Orrick did not look at filling the job requirements each year with certain

ranks or grades, but rather having enough people at the end of year 3 to fulfill the 20,000

troop increase, which led to his future research recommendation.

Orrick [21] suggested survival analysis since it “has proven to be a very useful tool in its

predictions based on attributes of a representative sample of the entire population” but the

data would not support this kind of analysis [21].

2.3.1 Model Comparison Techniques

With all of the different models available for use, choosing a best model is important.

One of the most common ways of doing this is using an R2 value. The R2 value, which

ranges from 0 to 1, is used to show how much of the variance in the response variable can
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be explained by the regressor variable(s). An R2 value of 0 means 0% of the variance in

the response variable can be explained by the regressor variable(s), while an R2 value of 1

signifies all of the variance in the response variable is explained by the regressor variables.

The closer to 1 the R2 gets, the better the model fit. This method is commonly used in

linear and logistic regression because the user is attempting to fit a line through data points

in order to interpolate data points that have not yet occurred.

The goodness-of-fit test is similar to that of the R2 value since it portrays how well the

data are fit by a given model. The goodness-of-fit test uses hypothesis testing. Hypothesis

testing is a method of statistical inference used to make a decision in the face of uncertainty.

Hypothesis testing involves a null hypothesis and an alternative hypothesis, with the purpose

of proving the null hypothesis to be false; to “reject the null”. Under the null hypothesis,

a statistical test is formed, in many goodness-of-fit cases, a chi-squared distribution-based

test. The hypothesis is tested against the chi-squared distribution to see if data observed is

as hypothesized or unlikely to be as hypothesized.

The goodness-of-fit can then be extended with the likelihood ratio test; the goodness-of-

fit of two models, one of which is the special case of the other. The likelihood ratio test is

based on the likelihood ratio, which shows how much more likely data is to be under one

model rather than the other model. The likelihood ratio is then used to either compute a

p-value or to be compared against a test statistic to see if the null hypothesis can be rejected

or not.

A model comparison tool used commonly in survival analysis is the Akaike Information

Criterion (AIC). “The AIC is used to test whether you have the appropriate model fit

between the competing non-nested models” [14]. A low number for an AIC is better, and

the equation to calculate the AIC statistic is:

AIC = −2 log L + 2(c + p + 1) (1)

where L is the log-likelihood, c is the number of covariates in the model and p is the
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number of parameters in the model [14]. The AIC is used to compare survival models because

it takes into account the log-likelihood and number of model parameters, and it penalizes

models for lack of parsimony, or too many model parameters. The AIC can be used to

compare nonparametric, semiparametric, or parametric survival models, or any combination

of the three against each other.

2.4 Antecedent Studies

The Air Force produces sustainment lines based on the 5-year historical retention rate.

Based on the year, the Air Force could either bring in too many people or not enough

people. If the Air Force brings in too few people one year, they want to bring in more

than the expected number of people the following year in order to balance and approach the

average number of people needed. Recently, manpower predictions have been examined by

using survival analysis techniques. Figure ?? shows a sustainment line from Zimmerman’s

[22] work on enlisted force retention.

Figure 1. Survival Analysis Sustainment Curve

This work is a follow-on of various previous explorations into Air Force manpower pre-

dictions using Survival Analysis. Schofield [23] and Zens [24] explored attrition behavior for

the non-rated officer career fields, Franzen [25] explored the rated officer career fields, and

Zimmerman [22] explored the enlisted career fields.

Schofield [23], used both logistic regression and survival analysis to produce an updated

model for use as the sustainment line process for Air Force manpower predictions. Schofield
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filtered the data set to only include non-rated officers within four generic career fields: Ac-

quisitions, Logistics, Support, and Non-Rated Officers. Schofield used logistic regression

to determine the significant factors in predicting the non-rated Air Force line officer reten-

tion. Schofield found that commissioning year, gender, commissioning source, number of

years served as a prior enlisted member, career field, and distinguished graduate status were

significant, with a few exceptions within different year brackets.

Schofield used these six significant factors in survival analysis in order to create the

sustainment lines for each of the selected career fields. Schofield found 99 survival functions

were necessary in explaining the selected non-rated career fields, with each survival function

being based on different combinations of variable settings. Schofield found that the methods

used were as effective as the current model utilized by HAF/A1 [23].

Zens [24] used Schofield’s work to forecast future personnel levels within the same four

career fields in order to predict “the number of personnel who will remain in each of these

career fields over the next 30 years”. Zens then measured the stability of those career fields

based on the mean and standard deviations for the coefficients of variation with the hopes of

decreasing personnel costs and enhancing understanding of officer behavioral patterns. The

survival curves enabled predicting retention rates for the 30 year time period.

Franzen [25] also used logistic regression to identify the significant factors contributing

to the attrition of rated officers and then applying survival analysis to build a model capable

of predicting attrition rates for rated officers. Franzen used demographic, economic, and

political data within her significant factors analysis because of how these three factor groups

can all influence the rated officer attrition.

Franzen used the same six explanatory variables as Zens and Schofield and analyzed these

variables within each career field. Franzen started with nonparametric survival analysis;

using Kaplan-Meier plots to show how manpower survival changes over time, but then applied

semiparametric analysis to this same data. Using Cox Proportional Hazards regression,

Franzen used economic and political factors in a Cox Proportional Hazard model to determine
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that there are six demographic factors; gender, number of years served as an enlisted member,

career field selection, commissioning year, commissioning source, and distinguished graduate

status, and one economic factor; male-to-female ratio, that are statistically significant in

modeling the retention behavior or rated officers. Franzen found that this methodology

yielded similar results to that of HAF/A1 [25].

Zimmerman [22] used survival analysis to examine enlisted force retention. Zimmerman

also used logistic regression to find the significant factors in predicting retention rates, but

found some significant factors that differed from the officer data analyzed by Zens, Schofield,

and Franzen. Zimmerman found that grade, gender, race, marital status, number of depen-

dents, and years of service were the significant factors in predicting retention. Grade and

years of service for enlisted personnel are similar to the commissioning year and number of

years served as a prior enlisted member for officers, but the main difference is that while offi-

cers have almost automatic promotion rates up to Captain, the enlisted force only automate

promotes to E4. The enlisted data used was examined at an aggregate level, separated by

year, AFSC, and Selective Reenlistment Bonus for each AFSC. The four AFSCs Zimmerman

examined were: Airfield Management (1C7XI), Operations Intelligence (1N0X1), Survival,

Evasion, Resistance and Escape (1T0X1), and Mental Health Services (4C0X1). Zimmer-

man used Kaplan-Meier estimation to compare the survival analysis techniques used in her

work to the current sustainment lines used by HAF/A1. These Kaplan-Meier plots were

then broke out into gender and marital status to analyze the survival of manpower based on

different significant factors.

Schofield, Zens, Franzen, and Zimmerman all came to the conclusion that the Air Force’s

current personnel retention models are as accurate, asthe models they created. Their rec-

ommendations were to continue to use the current retention models.
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III. Methodology

3.1 Introduction

Nonparametric survival analysis is used to examine trends and differences between the

chosen variables. Semiparametric survival analysis is used to identify significant factors

within the different career fields and for comparison to parametric survival models. Para-

metric survival analysis is then used to create models for predicting retention given these

significant variables.

3.2 Data Preparation

The data used for the survival analysis is a compilation of all monthly extracts provided

by HAF/A1 from January 2006 until December 2015. This data was previously modified

by Franzen [25] in her thesis work, and providesa breakdown of each career field chosen and

into different Current Years of Service (CYOS) groups. The data was given as SAS files and

was read into R for the analysis.The CYOS groups are: 0-6, 4-8, 8-14, 12-19, 20-22, with

each career field containing these CYOS groups.

Unfortunately, the personnel records given are prone to censoring because some response

values are not observed within the time frame of the records provided, or some values of the

variables may not fall in the specified range. This leads to some incomplete records, which

led to the use of overlapping CYOS’. The officer’s records are only included in a given CYOS

group if their career spans the entirety of the group; if an officer leaves the Air Force at

10 years, their records are in the 0-6 CYOS, the 4-8 CYOS, but not the 8-14 CYOS. This

overlapping prevents data truncation. The data was given with an individual for each line
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(data point), with all variables describing that individual while within the CYOS.

Survival analysis needs a status variable which indicates whether or not an officer has

separated. Survival analysis within R requires both a time component and a status variable,

with 0 indicating an individual remaining in the Air Force and 1 indicating the individual

leaving the Air Force. To add a status variable, each member was expanded out for every

year until their YOS (Years of Service). For example, if an individual stayed in the Air Force

for 12 years (YOS = 12), twelve data-points are created, with the only variable changing

being the status; which equals 0 for the first 11 years, and equals 1 once the individual’s

data has been replicated 12 times.

Previous work done in United States Air Force personnel retention analyzed the data

and were able to extract six variables necessary to best predict the model. This work was

done by Schofield [23] by a logistic regression model in SAS and continued in this work.

The covariates included in the model are Sex (M = Male, F = Female), Marital Status

(0 = Single, 1 = Married, 2 = Previously married but no longer), Dependents (0 = No

dependents, 1 = Dependents), Commissioning Source (1 = Other, 2 = United States Air

Force Academy (USAFA), 3 = Reserve Officer Training Corp (ROTC), 4 = Air Force Officer

Training School (OTS)), Distinguished Graduate (0 = Not a Distinguished Graduate, 1 =

Distinguished Graduate), and Prior Service (0 = No prior service, 1 = Prior service).

These variables were used by Schofield [23] and Franzen [25]. This current effort reviewed

the data to determine if there were any variables that may give a better answer for the

survival models. Upon review of the data, four variables were chosen and further analyzed

to determine if any of them would help the survival analysis: race, citizenship, religious

denomination, and place of birth (country/state). Race was previously used by Zimmerman

[22] for the enlisted force. These variables were chosen because they were categorical in

nature and seemed to be potentially be useful. None of the variables tested were significant,

so the variables used for the analysis were those given by Schofield [23] and Franzen [25].
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3.3 Career Field Analysis

Wald’s p-values were used to determine the variables’ significance. Previously the impor-

tance of the variables was established using linear regression by Schofield [23]. A proportional

hazards (PH) model allows for a distributional input to determine the significance of vari-

ables. This is done to reduce the difference between linear regression and survival analysis,

which in turn should allow for the best representation of the significant variables. The vari-

ables dependents (DEPENDS), distinguished graduate (DG), and prior service (PRIORSVC)

are binary variables (0 or 1) and sex, marital status (MARITALSTAT), along with Commis-

sioning Source (SOC) are categorical variables.

Before using the specific CYOS’s within the career fields, the broad career fields are

evaluated in order to determine if the variables are significant. Each career field was analyzed,

and Wald’s p-values were extracted as shown in Table 1.

Table 1. Wald’s p-values from each CYOS and Career Field

Variables ABM CSO Pilot

Sex 0.003 <0.001 <0.001

Marital Status <0.001 <0.001 <0.001

Dependents <0.001 <0.001 <0.001

Source of Commissioning <0.001 <0.001 0.5

Distinguished Graduate <0.001 <0.001 <0.001

Prior Service <0.001 <0.001 <0.001

Individuals 2543 7300 23863

Observations 32968 110043 327130

The initial analysis shows that commissioning source is insignificant for pilots. This is

a red flag because we do not want any of our variables chosen to be insignificant at any

point in time; we want the variables that best explain the data for the entirety of the data.

Because a p-value less than 0.05 shows significance, a p-value of 0.5 means that the variable

is insignificant for the survival analysis focused on pilots. This can be explained, however.
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Within the Air Force it is hard to get a pilot slot, and it is even harder for individuals to

receive a pilot slot that are not from either USAFA or ROTC. Within the data, 88% of the

pilots are either from USAFA or ROTC, so there may not be enough data for OTS and

other commissioning sources to balance out the effects of commissioning source on survival.

Further, when breaking down the data into the CYOS’, commissioning source is only found

insignificant once, as shown in Table 4.

3.3.1 ABM CYOS

For the analysis of the significant variables within the different CYOS subsets, Wald chi-

squared p-values are used. The Wald’s p-value is used to test the significance of variables

within a data set and helps examine how those career fields differ over the CYOS subsets.

This helps see if some variables are more important than others at certain times in an officer’s

career, or not at all. Table 2 shows the p-values for the different CYOS’ within the ABM

career field.

Table 2. ABM p-values

CYOS Sex Marital

Status

Dependents Commissioning

Source

Distinguished

Graduate

Prior

Service

Observations

0 to 6 0.001 <0.001 <0.001 0.061 <0.001 <0.001 2084

4 to 8 <0.001 <0.001 <0.001 0.505 <0.001 <0.001 1837

8 to 14 0.012 0.001 <0.001 0.001 <0.001 <0.001 1159

12 to 19 0.808 0.626 <0.001 0.005 0.367 <0.001 683

20 to 22 0.633 0.798 0.163 0.052 0.545 <0.001 498

Prior Service is significant for every CYOS subset, while Dependents is significant for

four of the five CYOS subsets. As the CYOS’ increase in years, the less variables are

significant. This could be due to ABM being a small data set, only 2,551 officers observed

in the given data, in comparison to the other career fields being analyzed. It can be difficult

to distinguish a correlation between the covariates and the response variable with a smaller
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data set. Further analysis can determine the accurate significance of these variables.

3.3.2 CSO CYOS

CSO is a larger career field, so it is easier to accurately determine the significance of the

covariates. The p-values for CSO are shown in Table 3.

Table 3. CSO p-values

CYOS Sex Marital

Status

Dependents Commissioning

Source

Distinguished

Graduate

Prior

Service

Observations

0 to 6 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 6462

4 to 8 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 5945

8 to 14 <0.001 0.008 <0.001 0.319 <0.001 <0.001 4293

12 to 19 <0.001 0.199 0.08 <0.001 <0.001 <0.001 3232

20 to 22 0.29 0.8 0.963 0.001 0.002 <0.001 2587

Once again, prior service is significant for all CYOS subsets, along with distinguished

graduate. Marital status and dependents start out as significant, for CYOS subsets 0-6, 4-8,

and 8-14, but become insignificant near the end of an officer’s careers. This could be due to

the needed stability of a career at the beginning of a marriage or family, but as the officer

ages, that stability may be less important. Sex becomes insignificant in the last CYOS

subset, which could be due to the fact that good officers are good officers, and their gender

does not matter. Commissioning Source is only insignificant in the middle of an officer’s

career.

3.3.3 Pilot CYOS

The pilot subset is the largest subset, which allows for the most accurate p-values. The

Wald’s p-values are shown in Table 4.
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Table 4. Pilot p-values

CYOS Sex Marital

Status

Dependents Commissioning

Source

Distinguished

Graduate

Prior

Service

Observations

0 to 6 <0.001 <0.001 <0.001 0.024 <0.001 <0.001 21548

4 to 8 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 5945

8 to 14 <0.001 0.008 <0.001 0.319 <0.001 <0.001 4293

12 to 19 <0.001 0.199 0.08 <0.001 <0.001 <0.001 3232

20 to 22 0.29 0.8 0.963 0.001 0.002 <0.001 2587

Once again, prior service and distinguished graduate are significant for all CYOS’, sex is

only insignificant at the end of a career, marital status and dependents become insignificant

near the end of a career, and Commissioning Source is insignificant in the middle of a career.

Pilot and CSO have the same significant variables, so it seems that more observations

within a data set lead to the “true” solution. ABM may not have enough data points

to give us the exact variable significance, but we can assume that as the number of data

points increases, the p-value table would converge to look like that of CSO and Pilot. In

comparison to CSO and Pilot, ABM seems to be under fitting the data; variables that should

be significant are shown as insignificant. This is probably because of the relatively small size

of the ABM data set in comparison to CSO and Pilot, so all variables are going to continue

to be used for the ABM data set with hopes of correctly fitting the data if it were larger.

3.4 Survival Analysis

3.4.1 Introduction

The data given has 628 variables for each individual within the 2006-2015 data. Six

key variables are chosen, and the status variable was created. Survival analysis is used to

estimate survival function curves, which in turn yields insight into the significant factors for

officer retention.
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There are three types of survival analysis. Nonparametric survival analysis is the baseline,

and does not make any predictions about how the covariates affect the shape, nor any

prediction of a distributional fit within the data. Nonparametric survival analysis is most

commonly done using life tables and Kaplan-Meier plots. Semiparametric analysis makes

an assumption about how the covariates affect the survival function, but does not make any

assumptions on a distributional fit within the data. Semiparametric analysis most commonly

uses Cox Proportional hazards regression for the analysis. These forms of analysis have

both been done previously for Air Force officer retention, most recently by Franzen [25].

Parametric survival analysis, however, makes an assumption for how the covariates affect

the shape and makes a distributional prediction for the shape of the model, i.e. exponential

or log-logistic [14]. R code was used to conduct all three types of survival analysis. The code

can be found in Appendix B.

3.4.2 Nonparametric Survival Analysis

Nonparametric survival analysis is done using the survfit command in R. This command

computes an estimate of a survival curve for censored data. The Kaplan-Meier plots are

useful because they can show survival and hazard functions without any underlying assump-

tions of how the binary or categorical variables affect the shape of the curves and allow for

us to see how the variables differ between the career fields.

The depiction of the survival curves for ABM, CSO, and Pilot with respect to sex are

seen in Figure 2. For all of the career fields, sex is significant until the last CYOS subset,

which is depicted in the Kaplan-Meier plots.
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Figure 2. Kaplain-Meier plots (Sex)

The plots all look similar, but one thing of note is that in all three plots males retain in

the Air Force longer tham females. All of the female survival curves stop before the male

survival curves, indicating a lack of data past that CYOS.

Figure 3 shows the Kaplan-Meier plots of ABM and CSO split up by marital status.

ABM and CSO are the only plots shown because Pilot, as shown in Appendix A, has a very

similar Kaplan-Meier plot to CSO for marital status.
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Figure 3. Kaplain-Meier plots (Marital Status)

In Figure 3 it seems early on, for all three career fields, married and previously married

are similar and stay above not married until at least year 20. For ABM, married takes over

predominantly as having the highest retention rate, but for all of the career fields not married

has the lowest retention probability. This could be because without a spouse an officer might

not need as much stability and may be more willing to separate and try their hand at the

public sector.

Figure 4 shows all three Kaplan-Meier plots in respect to dependents, with 0 being no

dependents and 1 being one or more dependents.
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Figure 4. Kaplain-Meier plots (Dependents)

There is some variation between the three Kaplan-Meier plots, especially with the pilot

plot showing the crossover from having dependents to not having dependents being the

dominant retention curve at about year 30. CSO stays level until about 20 years for the

officers having dependents, then begins to drop off, but, like ABM, always stays above not

having dependents.

Figure 5 shows the commissioning source Kaplan-Meier plots. SOC 1 represents other

commissioning sources, SOC 2 is USAFA, 3 is ROTC, and 4 is OTS.
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Figure 5. Kaplain-Meier plots (Commissioning Source)

The commissioning source plots show the most crossover between variables. ABM has

other commissioning source being the dominant retention curve until 10 years, then USAFA

until 20, other commissioning source for a few more years after that, and then OTS from 27

years on. This change toward the end could account for the fact that only about 20% of the

officers within the data stay until the 20 year mark so there is not a large sample.

All of the Kaplan-Meier plots for commissioning source have a lot of crossover, so it may

be hard to pinpoint a commissioning source that is more likely to stay in. CSO once again

is very level to year 20, 50% stay past year 15, 40% stay past year 20. This attrition rate is

much lower than the rest of the Air Force, so CSO seems to be stable; once an officer enters

the career field there is a 40% chance they retire at 20 years.

Figure 6 illustrates retention for distinguished graduates for all three career fields.
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Figure 6. Kaplain-Meier plots (Distinguished Graduate)

All three of the plots seem to have a steady trend between the two distinguished grad-

uate strata, with the only crossover being with pilot at the 30-year mark. There does not

seem to be too much of a difference between the two distinguished graduate categories, but

distinguished graduates do have a slightly higher survival than non-distinguished graduates

except at the year 30 mark for pilots.

Figure 7 shows the retention curves split by prior service for only CSO, because the other

two career fields’ plots look very similar.
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Figure 7. Kaplain-Meier plots (Prior Service)

From about year 17 to year 22, not being prior service is above being prior service,

the only time that happens. This might be because officers with prior service are closer

to retirement because of the previous time they served, so at year 17 officers without prior

service are almost at retirement and are more likely to stay in, but the prior service officers

may be past their 20-year mark at this 17-year commissioned point.

3.4.3 Semiparametric Survival Analysis

Semiparametric survival analysis makes assumptions about how the covariates affect the

shape of the hazard function, and commonly involves Cox Proportional Hazards regression

models. However, semiparametric models do not assume specific probability distributions

for model estimation. Instead, they assume an arbitrary probability distribution. As a

result, the interpolation of their estimates is relative. Coxph and phreg are used within R to

create the Cox survival functions and to find the Wald’s p-value of the variables, shown in
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Table 1, where all variables are significant except commissioning source for Pilot, which was

explained earlier. Semiparametric survival analysis was used previously for the Air Force’s

ABM, CSO, and Pilot career fields by Franzen [25]. The semiparametric survival analysis is

illustrated in order for comparison to parametric survival analysis, done in the next section.

Figure 8 illustrates the semiparametric survival curve for the officer subsets. Unlike other

survival analysis software like SAS, R does not provide a graph for all different combinations

of the survival possibilities (different combinations of the categorical variables). This inhibits

the ability to compare the groupings of the survival curves, but the ultimate survival curve

is still produced in R just like as in SAS.
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Figure 8. Cox PH Plots

In Figure 8, ABM and Pilot look similar, but Pilot has a less gradual drop off starting at

20 years. Once again CSO only graphs out to year 30 because of the lack of survival past year

30 in the CSO career field. Statistical metrics are taken from the semiparametric models and

used to compare against the parametric model shown in the Results and Analysis section.
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3.4.4 Parametric Survival Analysis

Parametric survival analysis has the most assumptions within the different survival anal-

ysis techniques; it makes an assumption about how the covariates affect the shape and it

makes an assumption that the data follows a probabilistic distribution. Within R, paramet-

ric survival analysis is done using the flexsurvreg command, which allows for the input of

distributions to fit the survival data to.

The flexsurvreg function has ten possible distributions; generalized gamma (stable), gen-

eralized gamma (original), generalized F (stable), generalized F (original), weibull, gamma,

exponential, log-logistic, log-normal, and gompertz. In our calculations to find the best

distributional fit, weibull was not used because of its incompatibility with the data. The

distribution used is the log-logistic distribution, and the reasoning is shown in the Results

and Analysis section.

The parametric survival model for the three career fields are shown in Figures 9, 10, and

11.
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Figure 9. Parametric plot for ABM
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Figure 10. Parametric plot for CSO
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Figure 11. Parametric plot for Pilot

For Figures 9, 10, and 11, the red line is the survival estimate using the parametric model,

while the black line is the Kaplan-Meier model for the same data. The parametric estimate

for ABM is very close to that of the Kaplan-Meier plot, while the other two career fields show

a substantial difference between the two methods of survival analysis. All three parametric

survival curves are done using the log-logistic distribution and are examined further in the

Akaike Information Criterion subsection of the Results and Analysis section. The results of

the variable estimates for all three career fields are shown in Table 5.
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Table 5. Parametric Model Parameters

Variables ABM CSO Pilot

Sex (Male) 0.88956 0.95761 0.96387

Marital Status (Married) 0.82956 0.8783 0.88496

Marital Status (No Longer) 0.06267 0.04772 0.03994

Dependents (Yes) 0.82028 0.88797 0.88049

SOC (USAFA) 0.07798 0.11572 0.43161

SOC(ROTC) 0.48699 0.53732 0.43686

SOC(OTS) 0.43318 0.3419 0.1268

DG (Yes) 0.11032 0.11424 0.16474

Shape 2.3003 2.86046 3.015904

Scale 17.1203 17.15319 13.525771

Table 5 shows the parameter estimates found in the above plots. The parameters allow

for other log-logistic regressions to be done without obtaining any survival data and fitting

the model to the model parameters. These plots and model parameters are found using an

Accelerated Failure Time model, which is discussed further below.

Proportional Hazards Model

Proportional Hazards regression (PH) is a form of parametric survival analysis which the

assumes that the effect of the covariates on the hazard function are to increase or decrease

proportionally throughout all time periods [26]. A log-logistic distribution is not available for

a PH regression, so an exponential distribution is used on the ABM data set as an example

in Table 6.
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Table 6. PH Model Parameters

Variables Coefficient

Sex (Male) -0.003

Marital Status (Married) -0.612

Marital Status (No Longer) -0.441

Dependents (Yes) -0.15

SOC (USAFA) 0.062

SOC(ROTC) 0.713

SOC(OTS) 0.049

DG (Yes) 0.073

Prior Service (Yes) -2.223

PH regression’s covariates behave similar to those in a linear or logistic regression; the

coefficients on the variables are a multiplier for all time periods. If the estimated coefficient

is negative, this indicates a lower risk of an event (retirement) with the increase of that

variable. Since all of the variables are categorical and non-continuous, a negative value

means retirement is less likely to happen. The PH regression model shown in Table 6 yields

an AIC value of 26576.17 for the exponential distribution, while the log-logistic Accelerated

Failure Time model yields an AIC of 21331.11 and the exponential Accelerated Failure Time

model yields an AIC of 24608.87. For the specific data set, Accelerated Failure Time models

yield the best result.

When using the flexsurvreg command, the distribution that is best fit determines whether

or not the PH or AFT model is best; the PH model is only used for the exponential and

gompertz distributions. Outside of the flexsurvreg command, the proportional hazards model

can only be used for three distributions; gompertz, exponential, and weibull [27]. If another

distribution is chosen that is within one of these models the proportional hazards model

can be chosen, otherwise the accelerated failure time model is appropriate. Since all of the
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distributions chosen were log-logistic, the accelerated failure time models were used.

Accelerated Failure Time Model

Accelerated failure time models (AFT) differ from proportional hazards model. While

proportional hazards models assume that the effect of the covariate is to multiply the hazard

by some constant, accelerated failure time models assume that the effect of the covariate is

to speed up or slow down time until an event. In other words, in the PH model the param-

eter estimates act multiplicatively on the variables while in an AFT model the parameter

estimates act multiplicatively on time [28]. The results of the AFT regression for the ABM,

CSO, and Pilot data are shown in Table 5.

If the estimated coefficient is negative, this implies decreasing survival times and shorter

expected durations. For example, in ABM when commissioning source (SOC) is 3 or 4

(ROTC or OTS), the expected time of survival is less than the baseline (SOC=1, other).

For those officers from USAFA (SOC = 2), the expected time of survival is longer than that

of the baseline. This could be because officers commissioned through OTS are generally, but

not always, older than their counterparts from the USAFA, ROTC, and other commissioning

sources. For sex, when an officer is male, the parameter estimate for ABM is 0.88956, and

taking the exponent of that value yields 2.43, which means that in comparison to females,

males reach survival half as slow (1/2.43 ). In other words, females are twice as fast to get

out as compared to males.

YOS as independent variable

Franzen [25] used only the variables sex, marital status, dependents, commissioning

source, distinguished graduate, and prior service in her semiparametric survival analysis

models for rated officers. In order to compare our model to hers, we saw it fit to use the

same variables in order to determine an exact comparison of survival analysis techniques.

Doing this, one thing we missed out on was using the years of service of an Air Force officer
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in hopes of better predicting the retention rates of officers. As expected, the amount of years

an individual stays in the Air Force will affect the ability of us to model whether or not an

officer gets out of the Air Force. In order to add on to the current methodology, we included

years of service as an independent variable to better predict retention. Years of service of an

officer and the CYOS subgroups are highly correlated; so the model was only done on the

entire data set for each career field. The plots for ABM, CSO, and Pilot are shown in Figures

12, 13, 14. The log-logistic distribution was selected and used in order to keep consistency

between the two methodologies.
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Figure 12. Parametric plot for ABM with YOS
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Figure 13. Parametric plot for CSO with YOS
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Figure 14. Parametric plot for Pilot with YOS
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Figures 12, 13, 14 show the new parametric plots using the log-logistic distribution while

including Years of Service as an independent variable. The plots look like they predict the

data worse; the remain at about 100% until year 13, then drop from 100% to 0% rapidly. This

looks to show that adding Years of Service would not benefit better modeling of retention

rates, but that will be examined more in the Results and Analysis section.
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IV. Results and Analysis

4.1 Introduction

Survival Analysis has produced survival lines for the officers within the ABM, CSO, and

Pilot career fields. The semiparametric and parametric models are compared to determine

the best model to fit the data.

4.2 Results

4.2.1 Distribution Selection

To determine the best distributional fit for the parametric models, the comparison met-

ric used is the Akaike Information Criterion (AIC). The AIC was calculated for all CYOS’

within each career field, and the career field as a whole using both semiparametric and fully

parametric survival analysis. The AIC is a common metric used to compare semiparamet-

ric and parametric models, illustrating which model performs better [29]. The AIC table

comparing the distributions for ABM is in Table 7.
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Table 7. AIC for ABM

Distribution AIC0to6 AIC4to8 AIC8to14 AIC12to19 AIC20to22 AIC

Exponential 24608.87 22151.45 14809.40 9060.22 6695.26 24608.87

Generalized F (original) 21511.70 18624.33 10885.54 5604.58 4019.07 21511.70

Generalized Gamma (stable) 21509.19 18972.63 10953.51 5711.78 3740.49 21509.19

Generalized Gamma (original) 21326.88 18578.07 11065.23 6268.34 3850.47 21326.88

Gompertz 21674.78 19288.46 11370.74 6115.91 4464.00 21674.78

Log-logistic 21331.11 18543.35 10808.54 5580.95 3705.29 21331.11

Log Normal 21368.32 18584.98 10951.07 5602.81 3638.30 21368.32

Weibull 21282.74 NA NA NA NA 26580.17

Gamma 21429.02 18550.13 11193.67 6158.81 4276.95 27210.28

Generalized F (stable) 21395.24 18622.49 10942.96 5934.13 3964.84 27049.35

The heading labels show the CYOS groups: 0-6, 4-8, 8-14, 12-19, 20-22. The log-logistic

distribution is the best for three of the five subgroups, with weibull and log normal being the

other two. The weibull distribution has a lot of NAs which inhibits the ability to choose that

distribution; it cannot work with the data sometimes. The generalized gamma (original)

distribution has the lowest overall AIC, with the log-logistic less than 0.1% behind. This

does not cause any concern for picking the log-logistic because of how close the AICs are to

each other.

The AIC table for the parametric distributions for CSO can be found in Table 8.

Table 8. AIC for CSO

Distribution AIC0to6 AIC4to8 AIC8to14 AIC12to19 AIC20to22 AIC

Exponential 78772.74 73478.43 55324.57 42753.85 34633.09 86630.08

Generalized F (original) 66693.08 60203.00 40263.59 25750.54 19766.33 77559.79

Generalized Gamma (stable) 68710.11 61649.02 40456.75 25530.37 19884.51 80714.11

Generalized Gamma (original) 68453.58 62917.52 41017.86 25584.70 19806.49 78762.38

Gompertz 69400.23 63866.29 40318.25 32916.91 24289.22 79000.94

Log-logistic 66508.04 59836.59 39337.68 25264.08 18607.15 77489.62

Log Normal 67320.81 60653.88 40025.79 25353.21 18358.40 78570.17

Weibull 65910.37 NA NA NA NA 77258.49

Gamma 66612.68 60128.28 40770.22 29600.52 23462.59 78829.83

Generalized F (stable) 66797.81 59891.82 40035.31 29823.30 19981.76 77971.74
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Once again, the weibull distribution cannot evaluate the data for a lot of the CYOS

subsets, even though it has the best overall AIC. The log-logistic falls behind again by 0.1%

and does not have any missing values. The generalized gamma (original) is now 6th, showing

inconsistency. Log-logistic has been the most consistent throughout, and like for ABM, was

the best at predicting the middle years of data for the CSO career field.

The AIC table for the parametric distributions for pilot can be found in Table 9.

Table 9. AIC for Pilot

Distribution AIC0to6 AIC4to8 AIC8to14 AIC12to19 AIC20to22 AIC

Exponential 253516.21 232664.79 175097.44 111833.10 82825.73 274236.13

Generalized F (original) 213849.39 191851.94 131747.12 70588.29 50179.96 241548.05

Generalized Gamma (stable) 216052.15 190646.71 133484.81 71475.57 49137.20 247593.62

Generalized Gamma (original) 220387.94 190543.75 132978.19 79249.15 48530.41 242366.90

Gompertz 244227.51 215610.92 158996.00 82343.91 56003.24 248719.76

Log-logistic 213804.85 189678.57 131545.15 70191.14 46155.58 241442.74

Log Normal 214770.98 190222.56 132651.52 70629.18 45232.73 243692.99

Weibull 213253.80 189142.90 NA NA NA 241083.00

Gamma 213889.80 189806.30 133299.40 72464.74 52266.63 242115.80

Generalized F (stable) 215867.90 191052.40 131872.00 71108.15 48429.36 242821.20

The weibull still has NA values, but is ranked number one on datasets it can evaluate.

The log-logistic is second, behind by less than 0.1%, showing that it is the most consistently

good distribution of the available options.

When looking at the tables for all of the AICs given their proper distribution and CYOS

group, there is a noticeable difference between the AICs within the different CYOS’. Starting

with the first CYOS (0-6), the AIC is generally higher than the other CYOS groups, and as

the CYOS’ change with time, the AICs lower. The early CYOS’ have more officers, leading

to more data points, which ultimately increases the AIC because it takes into account the

amount of data being analyzed. The AICs cannot be compared across career fields and

CYOS’ because of the difference in datapoints, but within the same career field and CYOS

the AIC can be compared.
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When the weibull does not have an N/A, it is usually the best. This inconsistency,

however, leads us to stay away from the weibull distribution. On average the log-logistic

distribution is the best, and it is the most consistent; always coming in either first or second.

The log-logistic distribution is the distribution chosen for the parametric survival analysis.

Figure 15 shows the parametric distributions; exponential, log-normal, gompertz, general

gamma (original), generalized gamma (stable), log-logistic, and weibull, in comparison to the

Kaplan-Meier plot for ABM.
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Figure 15. Parametric Distributions for ABM

Figure 15 shows the different distribution options for a parametric model. The chosen

distribution, log-logistic, is in dark green. The weibull, log-normal, generalized gamma

(original), generalized gamma (stable), and the log-logistic are similar in the beginning of

the data; from approximately CYOS’ 1 to 10. The gompertz distribution seems to fit the

data well for the last 20 years, which we know is a problem for the log-logistic distribution.

The reason this is occuring, but is still not the best distributional option, is because the
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log-logistic fits the data very well until approximately year 27, which makes up for the latter

years.

4.2.2 Parametric vs Semiparametric

Using log-logistic means next using the AIC to make comparisons between the parametric

and semiparametric models. The AIC is used to compare the semiparametric and parametric

models. The AIC table for ABM can be found in Table 10.

Table 10. AIC for ABM: Parametric vs Semiparametric

Distribution AIC0to6 AIC4to8 AIC8to14 AIC12to19 AIC20to22 AIC

Log-logistic 21331.11 18543.35 10808.54 5580.95 3705.29 21331.11

Semiparametric 34922.99 30208.75 17604.41 9397.01 6360.3 34922.99

Percent Difference 38.9 38.6 38.6 40.6 41.7 38.9

The AIC for log-logistic is better than for the semiparametric model, with a percent

change ranging from 38.6% to 41.7%. The AIC comparison for CSO is in Table 11.

Table 11. AIC for CSO: Parametric vs Semiparametric

Distribution AIC0to6 AIC4to8 AIC8to14 AIC12to19 AIC20to22 AIC

Log-logistic 66508.04 59836.59 39337.68 25264.08 18607.15 77489.62

Semiparametric 122895.92 111636.07 76313.61 54300.88 41685.5 141056.725

Percent Difference 45.9 46.4 48.5 53.5 55.4 45.1

The CSO career field is the second biggest dataset, so the difference in AIC between

the two models starts to get bigger. The AICs in general are also getting bigger. The AIC

comparison for pilot can be found in Table 12.

Table 12. AIC for Pilot: Parametric vs Semiparametric

Distribution AIC0to6 AIC4to8 AIC8to14 AIC12to19 AIC20to22 AIC

Log-logistic 213804.85 189678.57 131545.15 70191.14 46155.58 241442.74

Semiparametric 462150.7 411872.81 286261.89 162418.31 112436.92 516648.61

Percent Difference 53.7 53.9 54 56.8 58.9 53.3
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The pilot dataset is the largest, so the AICs have also gotten much bigger. the percent

difference did not change much from the CSO to the pilot career fields, but the percent

difference between the log-logistic model and the semiparametric model is around 50% for

these two datasets.

Tables 10, 11, and 12 show the AIC for all three career fields at each CYOS, along with

the total AIC for the data across the entire career field. The percent difference between the

log-logistic AIC and the semiparametric AIC ranges from 38.6% to 58.9%. Since the number

of parameters and covariates, along with the datasets, are the same size, that means the

log-likelihood is drastically different between the two. Tables 10, 11, and 12 show that the

parametric model models the data better than the semiparametric model.

4.2.3 YOS as independent variable

Table 13 shows the new AIC comparison tables with including Years of Service as an

independent variable for all career fields.

Table 13. AIC for ABM, CSO, and Pilot with YOS

Distribution ABM CSO Pilot

Exponential 26123.32 80236.50 255734.30

Generalized F (original) 18136.23 50379.74 159517.20

Generalized Gamma (Stable) 18247.28 59034.05 179155.80

Generalized Gamma (original) 18347.19 57593.09 187481.90

Gompertz 5927.77 24476.59 7457.80

Log-logistic 16188.06 45743.46 129940.00

Log Normal 17395.87 47687.04 140091.30

Weibull 15424.34 41760.59 120281.60

Gamma 19710.90 61084.95 112088.80

Generalized F (stable) 19243.89 54145.47 171661.60

For ease of observation, table 14 takes the log-logistic distribution from the original model

(without Years of Service) and the new model (with Years of Service) to better show the

differences between the two.
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YOS? ABMCSO Pilot 1 No 21331.11 77489.62 241442.7 2 Yes 16188.06 45743.46 129940.0

Table 14. AIC with YOS comparisons

YOS? ABM CSO Pilot

No 21331.11 77489.62 241442.74

Yes 16188.06 45743.46 129940.00

Table 14 shows the two models side-by-side; the top row of the table showing the original

model without Years of Service as an independent variable, and the bottom row of the table

showing Years of Service as an independent variable. The row with Years of Service as

an independent variable has a better AIC than the model without Years of Service as an

independent variable. This is alarming after looking at the plots shown in the Methodology

section because the plots did not look like they fit the data well, but their AICs are better

than the original model. Even though the AICs are better, the plots are cause for concern,

so the model with Years of Service is not analyzed any further.

4.3 Analysis

4.3.1 Residuals

The data and the parametric models are compared to test how well the parametric model

models the survival data. The survival probability at each Year (CYOS = 1-39) is extracted

from the data and the parametric model, then the difference between the two points for a

given CYOS are squared. The residual plots are shown in Figures 16, 17, and 18. The sum

of the squared error (SSE) is shown in Tables 15, 16, and 17, for ABM, CSO, and pilot,

respectively.

ABM

The SSE and residual plot for the ABM career field is shown in Table 15 and Figure 16.
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Figure 16. Residual plot for Parametric model (ABM)

Figure 16 shows that the residuals are pretty steady until year 20, where officers can

retire from the Air Force and get their full pension. It is expected that more officers get

out at this point. The residuals then return to a very steady line until year 27, where the

residuals begin to increase rapidly. This could be because there are such few people staying

in this late in their career that the model sacrifices the small fraction of data points in this

area in order to fit the data points in the beginning of the model better. The model decides

it is better to fit the earlier years more accurately because there are more data points, but

in turn sacrifices the accuracy of the later years.

The SSE for both the total model and until year 27 are shown in Table 15.

Table 15. Sum of Squared Error for Parametric model

SSE <= 27 years

1.14 0.04
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The SSE for the total model is high, but looking at the residual plot in Figure 16, when

the time gets greater than 27 years the residual plot shows larger residuals. Having an SSE

closer to 0 is better because it means that the model being tested models the data perfectly;

there is no difference between the data and the model. Although this is not the case, an SSE

of 0.037 shows a very strong model for modeling years 1-27.

CSO

The SSE and residual plot for the CSO career field is shown in Table 16 and Figure 17.
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Figure 17. Residual plot for Parametric model (CSO)

The natural cut-off for the CSO career field is at about 25 years looking at Figure 17.

There seems to be a jump in residuals at the 20 year mark which makes sense because there

is more than an average amount of people getting out once they hit the 20 year mark. The

sharp increase in residuals at the 25 year mark could be because the number of officers

getting out each year is different than the average. The model is sacrificing the accuracy in
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the later years for the almost perfect accuracy up to year 25, so if the retention rates change

at all, like they do after year 25, then the model will do a poor job predicting.

The SSE for the CSO data set is shown in Table 16.

Table 16. Sum of Squared Error for Parametric model

SSE <= 25 years

1.26 0.02

Table 16 shows what we thought; the residuals are good for for years 1-25, but increase

rapidly after year 25. The SSE of the total model is 1.256, but the residuals for years 1-25

are 0.021.

Pilot

The SSE table and residual plot can be found in Table 17 and Figure 18
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Figure 18. Residual plot for Parametric model (Pilot)
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From Figure 18 the residuals once again peak at year 20, indicating officers leave the

Air Force at year 20 in comparison to what is expected. From year 25 until year 40, the

residuals act in a strange way. The residuals continually increase until year 30, and then

begin to decrease until the data set ends at year 40. This shows that the model does well at

representing the data until year 25, and then the model begins to do a poor job predicting

the data until year 30, where the residuals peak at 0.12. The residuals then decrease from

year 30 to 40. At year 30 the model did the worst job at predicting the actual data.

Table 17. Sum of Squared Error for Parametric model

SSE <= 25 years

1.15 0.02

For Table 17, once again the model does a good job at predicting the earlier data, but a

bad job at predicting the later data. Since the model is following a distribution, it does not

account well for data that does not follow the log-logistic regression, or at least resemble it.

Although this occurs, the model still does a good job of predicting the data up to 25 years,

with an SSE of 0.019.

The residual plots (Figures 16, 17, and 18) allow for the visualization of how well the

model is predicting the data. For all three career fields the model does good at predicting

the data for a set amount of time (27 for ABM, 25 for both CSO and pilot). The model

seems to show favoritism for the earlier data, which makes sense because the earlier data

has more data points. Of the 327130 data points used for pilot (including each pilot each

year until their CYOS), 98.8% of the data is before year 25. The model fits the data before

year 25 well because there is so few data points after year 25 that the earlier group requires

all of the attention. This is why when looking in Figure 15, the gompertz distribution looks

like it fits the later data much better than that of the log-logistic, but because of how well

the log-logistic fits 98.8% of the data, it is the best distribution for fitting the data.
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V. Conclusion

Parametric models allow for future survival models to be established without any data.

Once the distributional parameters are established for a career field, those parameters can

create new survival curves without anymore data. Shown by their AICs, parametric survival

analysis is better at modeling the data provided by HAF/A1 than semiparametric survival

analysis. We recommend using parametric survival analysis in place of semiparametric sur-

vival analysis when trying to predict attrition rates of rated officers in the Air Force.

5.1 Limitations of Work

The goal of this work is to provide insight to personnel management officers for a specific

subpopulation of the United States Air Force; officers in the career fields of ABM, CSO, and

pilot. Each survival function applies directly to the respective career field, and although the

parametric distribution chosen is the same, the parameters differ for each career field. These

parametric distributions cannot be applied to other career fields because, as we even saw in

this data, every career field has different trends of attrition rates.

5.2 Follow-On Research

Recommended additional research could include conducting regression and survival anal-

ysis on other Air Force subpopulation to determine if other subpopulations’ survival follows

a distributional fit, and if it does, if it is the log-logistic. Within this data, the career fields

chosen could be broken down even more. There are numerous types of aircraft, and the

pilots all retain differently.
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Another follow-on study could be conducted with the data after the new Blended Retire-

ment System goes into place in 2018. This new retirement system gives benefits to people

that get out of the Air Force before the traditional 20-year mark, which may cause less

people to stay in for 20 years.

Additionally, future work could include the collection of different, time series data points

by HAF/A1 to allow for the better prediction of retention. In our data set, an officer was

either single, married, or divorced/widowed, but these things can change throughout an

officer’s career. An officer can be single for 4 years, married for 8 years, and then divorced

for 2 years before they decide to retire. This information would allow for a more accurate

representation of the categorical variables used, and probably a better predictive accuracy

to the attrition.

Finally, the work done with using Years of Service as an independent variable showed

promise, but not enough time permitted to complete this delve into a different modeling

technique. There is a reason the plots look like they do not model the data well but have a

low AIC, but this was not analyzed in depth and could be in the future.
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Appendix A

5.3 Data Example

IDNumber Year SEX MARITALSTAT DEPENDS SOC DG PRIORSVC YOS Status

1 12 1 M 1 1 3 0 0 4 0

2 12 2 M 1 1 3 0 0 4 0

3 12 3 M 1 1 3 0 0 4 0

4 12 4 M 1 1 3 0 0 4 1

5 27 1 M 0 0 4 0 0 10 0

6 27 2 M 0 0 4 0 0 10 0

7 27 3 M 0 0 4 0 0 10 0

8 27 4 M 0 0 4 0 0 10 0

9 27 5 M 0 0 4 0 0 10 0

10 27 6 M 0 0 4 0 0 10 0

11 27 7 M 0 0 4 0 0 10 0

12 27 8 M 0 0 4 0 0 10 0

13 27 9 M 0 0 4 0 0 10 0

14 27 10 M 0 0 4 0 0 10 1
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5.4 Marital Status
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Figure 19. Kaplain-Meier plots (Marital Status)
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5.5 Prior Service
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Figure 20. Kaplain-Meier plots (Prior Service)
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Figure 21. Kaplain-Meier plots (Prior Service)
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Appendix B

# Use ABM as example dataset.

# Code is the same for CSO and Pilot

## Packages

library(sas7bdat)

library(dplyr)

library(survival)

library(flexsurv)

library(knitr)

library(eha)

library(data.table)

library(kableExtra)

library(formattable)

library(survminer)

## Load the Data

abmall20<-read.sas7bdat("data/ABM/abmall20.sas7bdat",
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debug=FALSE)

abm0to6 <-read.sas7bdat("data/ABM/abm0to6.sas7bdat",

debug=FALSE)

abm4to8 <-read.sas7bdat("data/ABM/abm4to8.sas7bdat",

debug=FALSE)

abm8to14 <-read.sas7bdat("data/ABM/abm8to14.sas7bdat",

debug=FALSE)

abm12to19 <-read.sas7bdat("data/ABM/abm12to19.sas7bdat",

debug=FALSE)

abm20to22 <-read.sas7bdat("data/ABM/abm20to22.sas7bdat",

debug=FALSE)

abm <-read.sas7bdat("data/ABM/abm.sas7bdat",

debug=FALSE)

# Data Cleaning

# If using other file than abm, replace abm with data file name

load("data/ABM/abm.RData")

attach(abm)

# abmshort takes only the necessary variables

abmshort <- subset(abm, select=c("SSAN", "YOS_EOP", "SEX",

"MARITALSTAT", "DEPENDS",

"SOC", "DG", "PRIORSVC"))
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year <- c("Years of Service")

abmshort[,year] <- NA

abmshort$‘Years of Service‘ <- abmshort$YOS_EOP

colnames(abmshort)[2] <- "Year"

colnames(abmshort)[9] <- "YOS" # configure data frame for liking

# delete duplicates

abmshort <- abmshort[!duplicated(abmshort), ]

# SOC has non-numeric variables,

# so turns non-numeric to NA

abmshort$SOC <- as.numeric(as.character(abmshort$SOC))

# some variables have DG = "NaN",

# throw out individuals without a DG

colSums(is.na(abmshort))

nandg <- with(abmshort, which(DG=="NaN", arr.ind = TRUE))

abmshort <- abmshort[-nandg, ]

# abmshortexp makes a new datapoint per year

abmshortexp <- abmshort[rep(row.names(abmshort),

abmshort$Year),] %>%

group_by(SSAN) %>%

mutate(Year = 1:n()) # loops the year for each ssan

status <- c("Status")
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abmshortexp[,status] <- NA # creates new blank variable

# make variables factors

abmshortexp$DG <- as.factor(abmshortexp$DG)

abmshortexp$PRIORSVC <- as.factor(abmshortexp$PRIORSVC)

abmshortexp$Status <- as.factor(abmshortexp$Status)

abmshortexp$MARITALSTAT <- as.factor(abmshortexp$MARITALSTAT)

abmshortexp$DEPENDS <- as.factor(abmshortexp$DEPENDS)

abmshortexp$SOC <- as.factor(abmshortexp$SOC)

# make status = 1 when person retires

abmshortexp$Status <- ifelse(abmshortexp$Year ==

abmshortexp$YOS,1,0)

AICcompare <- matrix(ncol = 2, nrow = 2) # put the AICs into here for comparison

colnames(AICcompare) <- c("Type of SA", "AIC")

## Nonparametric Survival Analysis

attach(abmshortexp)

S <- Surv(Year, Status)

abmshortexp2 <- abmshortexp

abmshortexp2$SurvObj <- with(abmshortexp,

Surv(Year, Status == 1))
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res.km <- survfit(Surv(Year, Status) ~ SEX,

data = abmshortexp2)

plot(res.km, xlab = "Commissioned Whole Years of Service",

ylab = "Survival Probability")

## Semiparametric

attach(abmshortexp)

S <- Surv(Year, Status)

res.cox <- coxph(data = abmshortexp, S ~

SEX + MARITALSTAT + DEPENDS +

SOC + DG + PRIORSVC)

#summary(res.cox)

AICcompare[1,1] <- "Semiparametric"

AICcompare[1,2] <- round(AIC(res.cox), 3)

res.coxsurv <- survfit(res.cox)

plot(res.coxsurv)

## Parametric

Dist <- c("exp", "lnorm", "gompertz",

"gengamma", "gengamma.orig", "genf.orig",
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"llogis", "weibull")

AIC <- matrix(ncol = 2, nrow = 8)

attach(abmshortexp)

S <- Surv(Year, Status)

for(i in 1:nrow(AIC)){

AIC[i,1] <- Dist[i]

model <- flexsurvreg(S ~ SEX + MARITALSTAT + DEPENDS +

SOC + DG + PRIORSVC, dist=Dist[i],

method = "Nelder-Mead")

# gamma, genf, weibull?

#weibull did not work for

AIC[i,2] <- AIC(model)

}

colnames(AIC) <- c("Distribution", "AIC")

AIC <- transform(AIC, Distribution =

as.character(Distribution),

AIC = as.factor(AIC))

#### clean up AIC

AIC$AIC <- as.numeric(levels(AIC$AIC)[AIC$AIC])

AIC$AIC <- round(AIC$AIC,2)

AIC <- AIC[order(AIC$AIC),]

rownames(AIC) <- c()

if (AIC[1,2] < 0) {
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Disti <- AIC[2, 1]

} else {

Disti <- AIC[1, 1]

}

S <- Surv(Year, Status)

Disti <- "llogis"

model5 <- flexsurvreg(S ~ SEX + MARITALSTAT + DEPENDS +

SOC + DG + PRIORSVC,

dist=Disti, data = abmshortexp,

method = "Nelder-Mead")

AICcompare[2,1] <- Disti

AICcompare[2,2] <- round(AIC(model5),3) # AIC compares the two

plot(model5, ylab="Survival Probability",

xlab="Years", main = NULL,

cex.lab = 0.8, cex.axis = 0.8, cex.main=0.75)

legend("topright",legend=c("KM Plot","Fitted"),

lty=c(1,1),

col=c("black","red"), cex=0.75)

colnames(AICcompare) <- c("Distribution", "AICcompare")

AICcompare <- transform(AICcompare, Distribution =

as.character(Distribution),

AICcompare = as.factor(AICcompare))

#### clean up AICcompare

AICcompare$AICcompare <- as.numeric(levels(AICcompare$AICcompare)
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[AICcompare$AICcompare])

AICcompare$AICcompare <- round(AICcompare$AICcompare,2)

AICcompare <- AICcompare[order(AICcompare$AICcompare),]

rownames(AICcompare) <- c()

# PH paramerization

Expph <- phreg(formula = Surv(Year, Status) ~

SEX + MARITALSTAT + DEPENDS +

SOC + DG + PRIORSVC,

data = abmshortexp)

summary(Expph)

# AIC compare

abmAIC <- readRDS(file =

"data/ABM/abmAIC.rds")

abm0to6AIC <- readRDS(file =

"data/ABM/abm0to6AIC.rds")

abm4to8AIC <- readRDS(file =

"data/ABM/abm4to8AIC.rds")

abm8to14AIC <- readRDS(file =

"data/ABM/abm8to14AIC.rds")

abm12to19AIC <- readRDS(file =

"data/ABM/abm12to19AIC.rds")

abm20to22AIC <- readRDS(file =
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"data/ABM/abm20to22AIC.rds")

abmall20AIC <- readRDS(file =

"data/ABM/abmall20AIC.rds")

abmAICcompare <- readRDS(file =

"data/ABM/abmAICcompare.rds")

abm0to6AICcompare <- readRDS(file =

"data/ABM/abm0to6AICcompare.rds")

abm4to8AICcompare <- readRDS(file =

"data/ABM/abm4to8AICcompare.rds")

abm8to14AICcompare <- readRDS(file =

"data/ABM/abm8to14AICcompare.rds")

abm12to19AICcompare <- readRDS(file =

"data/ABM/abm12to19AICcompare.rds")

abm20to22AICcompare <- readRDS(file =

"data/ABM/abm20to22AICcompare.rds")

abmall20AICcompare <- readRDS(file =

"data/ABM/abmall20AICcompare.rds")

#### clean up AICcompare

colnames(abmAICcompare) <- c("Distribution", "AIC")

abmAICcompare <- transform(abmAICcompare, Distribution =

as.character(Distribution),

AIC = as.factor(AIC))
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abmAICcompare$AIC <- as.numeric(levels(abmAICcompare$AIC)

[abmAICcompare$AIC])

abmAICcompare$AIC <- round(abmAICcompare$AIC,2)

rownames(abmAICcompare) <- c()

abmAICall <- rbind(abmAIC, abmAICcompare)

# delete duplicates

abmAICall <- abmAICall[!duplicated(abmAICall), ]

abmAICall <- abmAICall[order(abmAICall$AIC),]

abmAICall

##saveRDS(abmAICall, "data/abm/abmAICall.rds")

abmAICall <- readRDS(file =

"data/ABM/abmAICall.rds")

abm0to6AICall <- readRDS(file =

"data/ABM/abm0to6AICall.rds")

abm4to8AICall <- readRDS(file =

"data/ABM/abm4to8AICall.rds")

abm8to14AICall <- readRDS(file =

"data/ABM/abm8to14AICall.rds")

abm12to19AICall <- readRDS(file =

"data/ABM/abm12to19AICall.rds")

abm20to22AICall <- readRDS(file =

"data/ABM/abm20to22AICall.rds")

# abmall20AICall <- readRDS(file =
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"data/ABM/abmall20AICall.rds")

Dist <- c("gompertz", "llogis", "gengamma.orig", "gengamma",

"lnorm", "genf.orig", "exp", "weibull",

"gamma", "genf", "Semiparametric")

colnames(abm0to6AICall) <- c("Distribution", "AIC0to6")

colnames(abm4to8AICall) <- c("Distribution", "AIC4to8")

colnames(abm8to14AICall) <- c("Distribution", "AIC8to14")

colnames(abm12to19AICall) <- c("Distribution", "AIC12to19")

colnames(abm20to22AICall) <- c("Distribution", "AIC20to22")

colnames(abmAICall) <- c("Distribution", "AIC")

abmAICforall <- Reduce(function(...) merge(..., all=TRUE),

list(abm0to6AICall, abm4to8AICall, abm8to14AICall,

abm12to19AICall, abm20to22AICall, abmAICall))

abmAICforall <- rbind(abmAICforall, AICextra)

abmAICforall[1,1] <- "Exponential"

abmAICforall[2,1] <- "Generalized F (original)"

abmAICforall[3,1] <- "Generalized Gamma (stable)"

abmAICforall[4,1] <- "Generalized Gamma (original)"

abmAICforall[5,1] <- "Gompertz"

abmAICforall[6,1] <- "Log-logistic"

abmAICforall[7,1] <- "Log Normal"

abmAICforall[8,1] <- "Semiparametric"
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abmAICforall[9,1] <- "Weibull"

abmAICforall[10,1] <- "Gamma"

abmAICforall[11,1] <- "Generalized F (stable)"

abmAICforall <- abmAICforall[c(1:7,9:11, 8), ]

#abmAICforall <- abmAICforall[, -c(7)]

#abmAICforall <- abmAICforall[order(abmAICforall$Distribution),]

saveRDS(abmAICforall, "data/ABM/abmAICforall.rds")

# abmAICforall <- readRDS(file = "data/ABM/abmAICforall.rds")

# readRDS(file = "data/ABM/abmAICforall.rds")

#AICextra

colnames(AICextra) <- c("Distribution", "AIC0to6", "AIC4to8",

"AIC8to14", "AIC12to19", "AIC20to22", "AIC")

AICextra <- transform(AICextra, Distribution = as.character(Distribution),

AIC0to6 = as.factor(AIC0to6), AIC4to8 =

as.factor(AIC4to8), AIC8to14 = as.factor(AIC8to14),

AIC12to19 = as.factor(AIC12to19), AIC20to22 =

as.factor(AIC20to22), AIC = as.factor(AIC))

#### clean up AIC
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AICextra$AIC0to6 <- as.numeric(levels(AICextra$AIC0to6)

[AICextra$AIC0to6])

AICextra$AIC4to8 <- as.numeric(levels(AICextra$AIC4to8)

[AICextra$AIC4to8])

AICextra$AIC8to14 <- as.numeric(levels(AICextra$AIC8to14)

[AICextra$AIC8to14])

AICextra$AIC12to19 <- as.numeric(levels(AICextra$AIC12to19)

[AICextra$AIC12to19])

AICextra$AIC20to22 <- as.numeric(levels(AICextra$AIC20to22)

[AICextra$AIC20to22])

AICextra$AIC <- as.numeric(levels(AICextra$AIC)

[AICextra$AIC])

AICextra$AIC0to6 <- round(AICextra$AIC0to6,2)

AICextra$AIC4to8 <- round(AICextra$AIC4to8,2)

AICextra$AIC8to14 <- round(AICextra$AIC8to14,2)

AICextra$AIC12to19 <- round(AICextra$AIC12to19,2)

AICextra$AIC20to22 <- round(AICextra$AIC20to22,2)

AICextra$AIC <- round(AICextra$AIC,2)

rownames(AIC) <- c()

# Compare models

abm0to6semimodel <- readRDS(file =

"data/ABM/abm0to6semimodel.rds")

abm0to6paramodel <- readRDS(file =
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"data/ABM/abm0to6paramodel.rds")

abm4to8semimodel <- readRDS(file =

"data/ABM/abm4to8semimodel.rds")

abm4to8paramodel <- readRDS(file =

"data/ABM/abm4to8paramodel.rds")

abm8to14semimodel <- readRDS(file =

"data/ABM/abm8to14semimodel.rds")

abm8to14paramodel <- readRDS(file =

"data/ABM/abm8to14paramodel.rds")

abm12to19semimodel <- readRDS(file =

"data/ABM/abm12to19semimodel.rds")

abm12to19paramodel <- readRDS(file =

"data/ABM/abm12to19paramodel.rds")

abm20to22semimodel <- readRDS(file =

"data/ABM/abm20to22semimodel.rds")

abm20to22paramodel <- readRDS(file =

"data/ABM/abm20to22paramodel.rds")

abmsemimodel <- readRDS(file =

"data/ABM/abmsemimodel.rds")

abmparamodel <- readRDS(file =

"data/ABM/abmparamodel.rds")

plot(abmparamodel, ylab="Survival Probability",

xlab="Years", main = NULL,

cex.lab = 0.8, cex.axis = 0.8, cex.main=0.75)

legend("topright",legend=c("KM Plot","Fitted"),

lty=c(1,1),col=c("black","red"), cex=0.75)
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